
1

Improving Software Security with
Dynamic Binary Instrumentation

Richard Johnson (rjohnson@sourcefire.com)
Principal Research Engineer Sourcefire VRT

2

The Good

● Software vulnerability mitigations are an
effective approach at making exploitation more
{ difficult | expensive | ineffective }

● Mitigations have been developed for most
major memory-related vulnerability classes

3

The Bad

● Due to the difficulty of development,
mitigations are almost exclusively developed
by vendors (with a few short-lived exceptions)

● Vendors supply mitigation technologies but do
not enforce their use by 3rd party developers.

4

The Ugly

● Understanding and defeating mitigations are a
top priority for vulnerability researchers
regardless of domain

● Current vendor mitigations are defeated by
modern exploitation techniques

5

The Challenge

● Determine if current binary instrumentation
frameworks provide the required technology to
develop one-off custom mitigations

● Criteria
▸ Stability
▸ Speed

▸ Ease of implementation

6

DYNAMIC BINARY
INSTRUMENTATION

7

Dynamic Binary Instrumentation

● Dynamic Binary Instrumentation (DBI) is a
process control and analysis technique that
involves injecting instrumentation code into a
running process

● DBI can be achieved through various means
▸ System debugging APIs

▸ Binary code caching

▸ Virtualization / Emulation

8

DBI Frameworks

● A DBI Framework facilitates the development
of Dynamic Binary Analysis (DBA) tools

● DBI Frameworks provide an API for binary
loading, process control, and instrumentation
▸ DynamoRIO
▸ PIN

▸ Valgrind

9

DBI Framework

DBI Architecture

Transform

Cache

Execute

Profile

Executing Process

Plugins

Analysis
&

Mitigations

Operating System / Hardware

Instrum
entation A

P
Is

10

PIN Architecture

11

Program Loading

● DBI Frameworks parse
program binaries and create a
code cache or hooks in order
for further instrumentation to
occur

● Code cache is typically
executed rather than original
binary mapping

Transform

Cache

Execute

Profile

12

Program Instrumentation

● Frameworks allow the registration of callbacks
to handle events and insert instrumentation
code

● Callbacks are considered instrumentation
routines and injected code are considered
analysis routines

13

Program Instrumentation

● Instrumentation hooks occur at varying
granularity
▸ Image Load

▸ Trace

▸ Function / Routine

▸ Block

▸ Instruction

14

Process Execution Events

● Callbacks for process execution events can be
registered in addition to code loading events
▸ Exceptions

▸ Process attach

▸ Process detach

▸ Fini

▸ Thread start

▸ Thread exit

15

DBA Plugins

● Existing research has shown several uses for
DBI frameworks
▸ Diagnostic execution tracing

● Call graph
● Code coverage
● Dataflow tracing

▸ Heap profiling and validation
● Think Application Verifier

▸ Cache profiling

16

DBA Plugins

● Existing research has shown several uses for
DBI frameworks
▸ Mitigations

● “Secure Execution Via Program Shepherding”
● Control Flow Integrity

● Existing mitigations are not available or do not
apply to modern Windows operating systems

17

Useless Benchmarks

● Benchmarking DBI frameworks is difficult

● The best benchmarks should measure CPU
and memory efficiency against a shared
analysis core

● We do not have this but lets look at some
numbers anyway

18

Useless Benchmarks

Fibonacci Sequence Benchmark
 100000 250000 500000
Native 1.42 7.379 28.143
DynamoRIO 1.607 7.472 28.891
PIN 2.402 8.377 29.219

C:\tools>yafu\yafu64
06/15/11 13:52:20 v1.20.2 @ BLACKHAWK, System/Build Info:
Using GMP-ECM 6.3, Powered by MPIR 2.1.1
detected Intel(R) Core(TM)2 Duo CPU T9900 @ 3.06GHz
detected L1 = 32768 bytes, L2 = 6291456 bytes, CL = 64 bytes
measured cpu frequency ~= 3035.702040

===
======= Welcome to YAFU (Yet Another Factoring Utility) =======
======= bbuhrow@gmail.com =======
======= Type help at any time, or quit to quit =======
===
cached 664581 primes. pmax = 10000079

19

Useless Benchmarks
C:\tools>ramspeed\ramspeed-win32.exe
RAMspeed (Win32) v1.1.1 by Rhett M. Hollander and Paul V. Bolotoff, 2002-09

USAGE: ramspeed-win32 -b ID [-g size] [-m size] [-l runs]
-b runs a specified benchmark (by an ID number):
 1 -- INTmark [writing] 4 -- FLOATmark [writing]
 2 -- INTmark [reading] 5 -- FLOATmark [reading]
 3 -- INTmem 6 – FLOATmem
…

Integer Benchmark (MB/sec)
 Copy Scale Add Triad AVG Time
Native 3451.85 3350.21 4022.76 3990.99 3703.95 23.182
DynamoRIO 3493.26 3335.9 3919.36 3839.93 3647.11 23.635
PIN 3382.53 3331.37 3767.52 3752.16 3558.39 24.633

20

Useful Benchmarks

● Benchmarks for security use are going to be
highly subjective

● Criteria
▸ Speed – Is the performance hit tolerable
▸ Reliability – Does the tool limit false positives and

not cause crashes on its own
▸ Ease of Implementation – How long does it take to

implement a tool under a particular DBI

21

RETURN ORIENTED
PROGRAMMING

22

Return Oriented Programming

● Return Oriented Programming (ROP) is the
modern term for “return-to-libc” method of
shellcode execution

● ROP can be used to bypass DEP
▸ VirtualProtect()

▸ VirtualAlloc()

▸ HeapCreate()

▸ WriteProcessMemory()

23

Gadget Shellcode

● Gadgets are a series
of assembly
instructions ending in
a return instruction

● Shellcode is
executed by creating
a fake call stack that
will chain a series of
instruction blocks
together

Generic Write-4 Gadget

rop += "\xD2\x9F\x10\x10“ # 0x10109FD2 :
 # POP EAX

 # RET
rop += "\xD0\x64\x03\x10“ # 0x100364D0 :

 # POP ECX
 # RET

rop += "\x33\x29\x0E\x10“ # 0x100E2933 :
 # MOV DWORD PTR DS:[ECX], EAX
 # RET

24

Gadget Shellcode

● Gadgets are a series
of assembly
instructions ending in
a return instruction

● Shellcode is
executed by creating
a fake call stack that
will chain a series of
instruction blocks
together

Grab kernel32 pointer from the stack, place it in
EAX ##

rop += "\x5D\x1C\x12\x10" * 6 # 0x10121C5D :
 # SUB EAX,30
 # RETN
rop += "\xF6\xBC\x11\x10" # 0x1011BCF6 :
 # MOV EAX, DWORD PTR DS:
[EAX]
 # POP ESI
 # RETN
rop += rop_align

25

Gadget Shellcode

● Gadgets are a series
of assembly
instructions ending in
a return instruction

● Shellcode is
executed by creating
a fake call stack that
will chain a series of
instruction blocks
together

EAX = kernel32 base, get pointer to VirtualProtect()
##

rop += ("\x76\xE5\x12\x10" + rop_align) * 4
 # 0x1012E576 :

 # ADD EAX,100
 # POP EBP
 # RETN

rop += "\x40\xD6\x12\x10“ # 0x1012D640 :
 # ADD EAX,20
 # RETN

rop += "\xB1\xB6\x11\x10“ # 0x1011B6B1 :
 # ADD EAX,0C

 # RETN
rop += "\xD0\x64\x03\x10“ # 0x100364D0 :

 # ADD EAX,8
 # RETN

rop += "\x33\x29\x0E\x10" # 0x100E2933 :
 # DEC EAX
 # RETN

rop += "\x01\x2B\x0D\x10" # 0x100D2B01 :
 # MOV ECX,EAX

 # RETN
rop += "\xC8\x1B\x12\x10" # 0x10121BC8 :

 # MOV EAX,EDI
 # POP ESI
 # RETN

26

Gadget Shellcode

Small section of shellcode showing several gadgets
chained together to locate kernel32!VirtualProtect()

########## VirtualProtect call placeholder ##########
rop += "\x42\x45\x45\x46" #&Kernel32.VirtualProtect() placeholder - "BEEF"
rop += "WWWW" #Return address param placeholder
rop += "XXXX" #lpAddress param placeholder
rop += "YYYY" #Size param placeholder
rop += "ZZZZ" #flNewProtect param placeholder
rop += "\x60\xFC\x18\x10" #lpflOldProtect param placeholder 0x1018FC60
{PAGE_WRITECOPY}
rop += rop_align * 2
########## Grab kernel32 pointer from the stack, place it in EAX ##########
rop += "\x5D\x1C\x12\x10" * 6 #0x10121C5D : # SUB EAX,30 # RETN
rop += "\xF6\xBC\x11\x10" #0x1011BCF6 : # MOV EAX,DWORD PTR DS:[EAX] # POP ESI #
RETN
rop += rop_align
########## EAX = kernel pointer, now retrieve pointer to VirtualProtect() ##########
rop += ("\x76\xE5\x12\x10" + rop_align) * 4 #0x1012E576 : # ADD EAX,100 # POP EBP # RETN
rop += "\x40\xD6\x12\x10" #0x1012D640 : # ADD EAX,20 # RETN
rop += "\xB1\xB6\x11\x10" #0x1011B6B1 : # ADD EAX,0C # RETN
rop += "\xD0\x64\x03\x10" #0x100364D0 : # ADD EAX,8 # RETN
rop += "\x33\x29\x0E\x10" #0x100E2933 : # DEC EAX # RETN
rop += "\x01\x2B\x0D\x10" #0x100D2B01 : # MOV ECX,EAX # RETN
rop += "\xC8\x1B\x12\x10" #0x10121BC8 : # MOV EAX,EDI # POP ESI # RETN

27

Finding Gadgets

● Useful gadgets typically modify a pointer or
cause a load or store operation
▸ ADD, SUB, DEC, INC, DEC, PUSH, POP, XCHG,

XOR

● Tools now exist for finding gadgets
▸ msfpescan

▸ Pvefindaddr – PyCommand for ImmunityDbg

28

Detecting ROP

● ROP requires the use of sub-sections of
program blocks to create Gadgets

● Gadgets end in a RET instruction

● Normal program semantics generate call
stacks that return to a code location
immediately after a CALL or JMP instruction

29

Detecting ROP

● Algorithm
INSTRUMENT_PROGRAM
for each IMAGE
 for each BLOCK in IMAGE
 insert BLOCK in BLOCKLIST
 for each INSTRUCTION in BLOCK
 if INSTRUCTION is RETURN or BRANCH
 insert code to retrieve SAVED_EIP from stack
 insert CALL to ROP_VALIDATE(SAVED_EIP) before INSTRUCTION

ROP_VALIDATE
if SAVED_EIP not in BLOCKLIST
 exit with error warning

30

Detecting ROP

● Implementation
▸ The initialization

for our pintool is
as simple as
opening a log file
and adding a
couple hooks

int main(int argc, char *argv[])
{
 PIN_InitSymbols();
 if(PIN_Init(argc,argv))
 {
 return Usage();
 }

 outfile = fopen("c:\\tools\\antirop.txt", "w");
 if(!outfile)
 {
 LOG("Error opening log file\n");
 return 1;
 }

 PIN_AddFiniFunction(Fini, 0);
 TRACE_AddInstrumentFunction(Trace, 0);

 LOG("[+] AntiROP instrumentation hooks
installed\n");

 PIN_StartProgram();

 return 0;
}

31

Detecting ROP

● Implementation
▸ This function

implements the
callback function
when PIN loads a
trace of basic
blocks the first
time and
instruments RET
instructions

VOID Trace(TRACE trace, VOID *v)
{
 ADDRINT addr = TRACE_Address(trace);

 // Visit every basic block in the trace
 for (BBL bbl = TRACE_BblHead(trace);
 BBL_Valid(bbl);
 bbl = BBL_Next(bbl))
 {
 for(INS ins = BBL_InsHead(bbl);
 INS_Valid(ins);
 ins=INS_Next(ins))
 {
 ADDRINT va = INS_Address(ins);
 if(INS_IsBranchOrCall(ins))
 {
 Calls.insert(va);
 }

 if(INS_IsRet(ins))
 {
 INS_InsertCall(ins,
 IPOINT_BEFORE,
AFUNPTR(AntiROPRetCheck),
 IARG_INST_PTR,
 IARG_REG_VALUE, REG_STACK_PTR,
 IARG_END);
 }
 }
 }
}

32

Detecting ROP

● Implementation
▸ This function

executes before
every RET or
indirect branch is
executed to
validate the saved
return value points
to an instruction
after a call

VOID AntiROPRetCheck(ADDRINT va, ADDRINT esp)
{
 UINT32 *ptr = (UINT32 *)esp;

 for(int i = 0; i < 4; i++)
 {
 if(*(ptr + i) == 0x90909090)
 {
 fprintf(outfile,

"NOPS FOUND AT ESP + %d: [%x] = 0x90909090\n",
i, ptr + i);

 }
 }

 CallsIter = Calls.find(*ptr);
 if (CallsIter != Calls.end())
 {
 count = 0;
 }
 else if(++count > threshold)
 {
 ReportAntiROP(*ptr, count, threshold);
 }

 fflush(outfile);
}

33

Detecting ROP

● Output

DEMO

C:\tools>pin\pin.bat -t mypintool.dll -AntiROPRet -- kmplayer\KMPlayer.exe
C:\tools>type antirop.txt
NOPS FOUND AT ESP + 1: [1196b5f4] = 0x90909090
NOPS FOUND AT ESP + 2: [1196b5f8] = 0x90909090
NOPS FOUND AT ESP + 3: [1196b5fc] = 0x90909090
ANTI-ROP detected an attempted RET to 100ebf17 without using a CALL .. exiting

34

Other Mitigations

● ROPDefender
▸ Shadow stack

● Hook before CALL to store return address
● Hook before RET to determine if returning to address

stored before CALL

● SHAN
▸ Branch monitoring

● Store each valid basic block in a list before execution
● At runtime verify branch destination is in list

35

JUST-IN-TIME SHELLCODE

36

Just-In-Time Shellcode

● Just-in-Time (JIT) Shellcode is emitted by a JIT
compiler while converting bytecode of an
interpreted language to native machine code

● Scripting code such as ActionScript or
Javascript is supplied by the user and
therefore creates potential for control of native
code in the process address space

37

Just-In-Time Shellcode

● The JIT process creates a writable and
executable page with user controlled data

● If an attacker can manipulate the emitted
machine code, it can be used to the advantage
of the attacker to bypass mitigations

38

VS

Just-In-Time Shellcode

● Published research has shown that using math
operators, specifically XOR, leads to
controllable machine code output

Operator ADD (+):
[b8 90 90 90 3c] mov eax ,03 c909090h
[f2 0f 2a c0] cvtsi2sd xmm0 , eax
[66 0f 28 c8] movapd xmm1 , xmm0
[f2 0f 58 c8] addsd xmm1 , xmm0
[f2 0f 58 c8] addsd xmm1 , xmm0

Operator XOR (^):
[b8 90 90 90 3c] mov eax , 3c909090h
[35 90 90 90 3c] xor eax , 3c909090h
[35 90 90 90 3c] xor eax , 3c909090h
[35 90 90 90 3c] xor eax , 3c909090h
[35 90 90 90 3c] xor eax , 3c909090h
[35 90 90 90 3c] xor eax , 3c909090h
[35 90 90 90 3c] xor eax , 3c909090h

39

Just-In-Time Shellcode

● Published research has shown that using math
operators, specifically XOR, leads to
controllable machine code output

var y=(0x11223344^0x44332211^0x44332211…);

Compiles as:

0x909090: 35 44 33 22 11 XOR EAX, 11223344
0x909095: 35 44 33 22 11 XOR EAX, 11223344
0x90909A: 35 44 33 22 11 XOR EAX, 11223344

40

Just-In-Time Shellcode

● Published research has shown that using math
operators, specifically XOR, leads to
controllable machine code output

Disassemble at a byte offset to get useful code:

0x909091: 44 INC ESP
0x909092: 33 22 XOR ESP, [EDX]
0x909094: 11 35 44 33 22 11 ADC [11223344], ESI
0x90909A: 35 44 33 22 11 XOR EAX, 11223344

41

Just-In-Time Shellcode

● The native behavior of the JIT compiler results
in an automatic DEP bypass

● Once a usable payload is constructed using
specialized arguments around the XOR
operator the executable payload must be
found

● Heapspray or memory leak
▸ See Dion Blazakis’s paper “Interpreter Exploitation”

42

Detecting JIT Shellcode

● The ActionScript and JavaScript JIT compilers
change memory permissions of compiled
machine code to R-E rather than RWE before
execution

● We have seen that currently known JIT
shellcode relies heavily on the XOR operator

43

Detecting JIT Shellcode

● We can use a simple heuristic by hooking
kernel32!VirtualProtect and checking the
disassembly for an unusual number of XORs

● Piotr Bania also pointed out a primitive that
can be used to identify operators

mov reg , IMM32
operation reg , IMM32
operation reg , IMM32
operation reg , IMM32
…

44

Detecting JIT Shellcode

● Algorithm
INSTRUMENT_PROGRAM
Insert CALL to JIT_VALIDATE at prologue to VirtualProtect

JIT_VALIDATE
Disassemble BUFFER passed to VirtualProtect
for each INSTRUCTION
 if INSTRUCTION is MOV_REG_IMM32 then
 while NEXT_INSTRUCTION uses IMM32
 increase COUNT
 if COUNT > THRESHOLD then
 exit with error warning

45

Detecting JIT Shellcode

● Implementation
▸ The initialization

for our pintool is
as simple as
opening a log file
and adding a
couple hooks

int main(int argc, char *argv[])
{
 PIN_InitSymbols();
 if(PIN_Init(argc,argv))
 {
 return Usage();
 }

 outfile = fopen("c:\\tools\\antijit.txt", "w");
 if(!outfile)
 {
 LOG("Error opening log file\n");
 return 1;
 }

 IMG_AddInstrumentFunction(ModuleLoad, NULL);

 LOG("[+] AntiJIT instrumentation hooks
installed\n");

 PIN_StartProgram();

 return 0;
}

46

Detecting JIT Shellcode

● Implementation
▸ This function

implements the
callback function
when PIN loads a
module so that
VirtualProtect may
be hooked

void ModuleLoad(IMG img, VOID *v)
{
 RTN rtn;

 rtn = RTN_FindByName(img, "VirtualProtect");
 if (RTN_Valid(rtn))
 {
 RTN_Open(rtn);

 RTN_InsertCall(rtn,
 IPOINT_BEFORE,
AFUNPTR(VirtualProtectHook),
 IARG_FUNCARG_ENTRYPOINT_VALUE, 0, //
lpAddress
 IARG_FUNCARG_ENTRYPOINT_VALUE, 1, //
dwSize
 IARG_END);

 RTN_Close(rtn);
 }
}

47

Detecting JIT Shellcode

● Implementation
▸ This function

executes before
calls to
VirtualProtect to
disassemble the
target buffer and
determine if a JIT
shellcode is
probable

void VirtualProtectHook(VOID *address, SIZE_T dwSize)
{
 // Disassemble buffer into linked list
...
 while(insn && !MOV_IMM32(insn))
 insn = insn->next;

 while(insn)
 {
 if(OP_IMM32(insn)
 count++;

 if(count > threshold)
 ReportAntiJIT();

 insn = insn->next;
 }
}

48

QUESTIONS

49

Q & A

● VRT information:
▸ Web – http://www.snort.org/vrt

▸ Blog – http://vrt-sourcefire.blogspot.com/

▸ Twitter – @VRT_sourcefire

▸ Videos – http://vimeo.com/vrt

▸ Labs – http://labs.snort.org

Richard Johnson

rjohnson@sourcefire.com

rjohnson@uninformed.org

@richinseattle

http://www.snort.org/vrt
http://vrt-sourcefire.blogspot.com/
http://twitter.com/VRT_sourcefire
http://vimeo.com/vrt
http://labs.snort.org/
http://labs.snort.org/
mailto:rjohnson@sourcefire.com
mailto:rjohnson@uninformed.org

50

References

	Slide 1
	The Good
	The Bad
	The Ugly
	The Challenge
	Dynamic binary instrumentation
	Dynamic Binary Instrumentation
	DBI Frameworks
	DBI Architecture
	PIN Architecture
	Program Loading
	Program Instrumentation
	Program Instrumentation
	Process Execution Events
	DBA Plugins
	DBA Plugins
	Useless Benchmarks
	Useless Benchmarks
	Useless Benchmarks
	Useful Benchmarks
	Return oriented programming
	Return Oriented Programming
	Gadget Shellcode
	Gadget Shellcode
	Gadget Shellcode
	Gadget Shellcode
	Finding Gadgets
	Detecting ROP
	Detecting ROP
	Detecting ROP
	Detecting ROP
	Detecting ROP
	Detecting ROP
	Other Mitigations
	Just-In-Time Shellcode
	Just-In-Time Shellcode
	Just-In-Time Shellcode
	Just-In-Time Shellcode
	Just-In-Time Shellcode
	Just-In-Time Shellcode
	Just-In-Time Shellcode
	Detecting JIT Shellcode
	Detecting JIT Shellcode
	Detecting JIT Shellcode
	Detecting JIT Shellcode
	Detecting JIT Shellcode
	Detecting JIT Shellcode
	Questions
	Q & A
	References

