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The Good

● Software vulnerability mitigations are an 
effective approach at making exploitation more 
{ difficult | expensive | ineffective }

● Mitigations have been developed for most 
major memory-related vulnerability classes
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The Bad

● Due to the difficulty of development, 
mitigations are almost exclusively developed 
by vendors (with a few short-lived exceptions)

● Vendors supply mitigation technologies but do 
not enforce their use by 3rd party developers.
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The Ugly

● Understanding and defeating mitigations are a 
top priority for vulnerability researchers 
regardless of domain

● Current vendor mitigations are defeated by 
modern exploitation techniques
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The Challenge

● Determine if current binary instrumentation 
frameworks provide the required technology to 
develop one-off custom mitigations

● Criteria
▸ Stability
▸ Speed

▸ Ease of implementation
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DYNAMIC BINARY 
INSTRUMENTATION
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Dynamic Binary Instrumentation

● Dynamic Binary Instrumentation (DBI) is a 
process control and analysis technique that 
involves injecting instrumentation code into a 
running process

● DBI can be achieved through various means
▸ System debugging APIs

▸ Binary code caching

▸ Virtualization / Emulation
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DBI Frameworks

● A DBI Framework facilitates the development 
of Dynamic Binary Analysis (DBA) tools

● DBI Frameworks provide an API for binary 
loading, process control, and instrumentation
▸ DynamoRIO
▸ PIN

▸ Valgrind
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PIN Architecture
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Program Loading

● DBI Frameworks parse 
program binaries and create a 
code cache or hooks in order 
for further instrumentation to 
occur

● Code cache is typically 
executed rather than original 
binary mapping
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Program Instrumentation

● Frameworks allow the registration of callbacks 
to handle events and insert instrumentation 
code

● Callbacks are considered instrumentation 
routines and injected code are considered 
analysis routines
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Program Instrumentation

● Instrumentation hooks occur at varying 
granularity
▸ Image Load

▸ Trace 

▸ Function / Routine

▸ Block

▸ Instruction
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Process Execution Events

● Callbacks for process execution events can be 
registered in addition to code loading events
▸ Exceptions

▸ Process attach

▸ Process detach

▸ Fini

▸ Thread start

▸ Thread exit
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DBA Plugins

● Existing research has shown several uses for 
DBI frameworks
▸ Diagnostic execution tracing

● Call graph
● Code coverage
● Dataflow tracing

▸ Heap profiling and validation
● Think Application Verifier

▸ Cache profiling
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DBA Plugins

● Existing research has shown several uses for 
DBI frameworks
▸ Mitigations

● “Secure Execution Via Program Shepherding”
● Control Flow Integrity

● Existing mitigations are not available or do not 
apply to modern Windows operating systems
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Useless Benchmarks

● Benchmarking DBI frameworks is difficult

● The best benchmarks should measure CPU 
and memory efficiency against a shared 
analysis core

● We do not have this but lets look at some 
numbers anyway
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Useless Benchmarks

Fibonacci Sequence Benchmark
 100000 250000 500000
Native 1.42 7.379 28.143
DynamoRIO 1.607 7.472 28.891
PIN 2.402 8.377 29.219

C:\tools>yafu\yafu64
06/15/11 13:52:20 v1.20.2 @ BLACKHAWK, System/Build Info:
Using GMP-ECM 6.3, Powered by MPIR 2.1.1
detected Intel(R) Core(TM)2 Duo CPU     T9900  @ 3.06GHz
detected L1 = 32768 bytes, L2 = 6291456 bytes, CL = 64 bytes
measured cpu frequency ~= 3035.702040

===============================================================
======= Welcome to YAFU (Yet Another Factoring Utility) =======
=======             bbuhrow@gmail.com                   =======
=======     Type help at any time, or quit to quit      =======
===============================================================
cached 664581 primes. pmax = 10000079
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Useless Benchmarks
C:\tools>ramspeed\ramspeed-win32.exe
RAMspeed (Win32) v1.1.1 by Rhett M. Hollander and Paul V. Bolotoff, 2002-09

USAGE: ramspeed-win32 -b ID [-g size] [-m size] [-l runs]
-b  runs a specified benchmark (by an ID number):
     1 -- INTmark [writing]          4 -- FLOATmark [writing]
     2 -- INTmark [reading]          5 -- FLOATmark [reading]
     3 -- INTmem                     6 – FLOATmem
…

Integer Benchmark (MB/sec)     
 Copy Scale Add Triad AVG Time
Native 3451.85 3350.21 4022.76 3990.99 3703.95 23.182
DynamoRIO 3493.26 3335.9 3919.36 3839.93 3647.11 23.635
PIN 3382.53 3331.37 3767.52 3752.16 3558.39 24.633
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Useful Benchmarks

● Benchmarks for security use are going to be 
highly subjective

● Criteria
▸ Speed – Is the performance hit tolerable
▸ Reliability – Does the tool limit false positives and 

not cause crashes on its own
▸ Ease of Implementation – How long does it take to 

implement a tool under a particular DBI
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RETURN ORIENTED 
PROGRAMMING
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Return Oriented Programming

● Return Oriented Programming (ROP) is the 
modern term for “return-to-libc” method of 
shellcode execution

● ROP can be used to bypass DEP
▸ VirtualProtect()

▸ VirtualAlloc()

▸ HeapCreate()

▸ WriteProcessMemory()
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Gadget Shellcode

● Gadgets are a series 
of assembly 
instructions ending in 
a return instruction

● Shellcode is 
executed by creating 
a fake call stack that 
will chain a series of 
instruction blocks 
together

## Generic Write-4 Gadget ##

rop += "\xD2\x9F\x10\x10“      # 0x10109FD2 : 
     # POP EAX

      # RET 
rop += "\xD0\x64\x03\x10“      # 0x100364D0 :

     # POP ECX
     # RET

rop += "\x33\x29\x0E\x10“      # 0x100E2933 :
     # MOV DWORD PTR DS:[ECX], EAX
     # RET
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Gadget Shellcode

● Gadgets are a series 
of assembly 
instructions ending in 
a return instruction

● Shellcode is 
executed by creating 
a fake call stack that 
will chain a series of 
instruction blocks 
together

## Grab kernel32 pointer from the stack, place it in 
EAX ##

rop += "\x5D\x1C\x12\x10" * 6  # 0x10121C5D :  
                               # SUB EAX,30 
                               # RETN
rop += "\xF6\xBC\x11\x10"      # 0x1011BCF6 :  
                               # MOV EAX, DWORD PTR DS:
[EAX] 
                               # POP ESI 
                               # RETN
rop += rop_align
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Gadget Shellcode

● Gadgets are a series 
of assembly 
instructions ending in 
a return instruction

● Shellcode is 
executed by creating 
a fake call stack that 
will chain a series of 
instruction blocks 
together

## EAX = kernel32 base, get pointer to VirtualProtect() 
##

rop += ("\x76\xE5\x12\x10" + rop_align) * 4     
                               # 0x1012E576 :  

     # ADD EAX,100 
     # POP EBP 
     # RETN

rop += "\x40\xD6\x12\x10“      # 0x1012D640 :  
     # ADD EAX,20 
     # RETN

rop += "\xB1\xB6\x11\x10“      # 0x1011B6B1 :  
          # ADD EAX,0C 

     # RETN
rop += "\xD0\x64\x03\x10“      # 0x100364D0 :  

     # ADD EAX,8 
     # RETN

rop += "\x33\x29\x0E\x10"      # 0x100E2933 :  
     # DEC EAX 
     # RETN

rop += "\x01\x2B\x0D\x10"      # 0x100D2B01 :  
     # MOV ECX,EAX 

                            # RETN
rop += "\xC8\x1B\x12\x10"      # 0x10121BC8 :  

     # MOV EAX,EDI 
     # POP ESI 
     # RETN
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Gadget Shellcode

Small section of shellcode showing several gadgets 
chained together to locate kernel32!VirtualProtect()

########## VirtualProtect call placeholder ##########
rop += "\x42\x45\x45\x46"                       #&Kernel32.VirtualProtect() placeholder - "BEEF"
rop += "WWWW"                                   #Return address param placeholder
rop += "XXXX"                                   #lpAddress param placeholder
rop += "YYYY"                                   #Size param placeholder
rop += "ZZZZ"                                   #flNewProtect param placeholder
rop += "\x60\xFC\x18\x10"                       #lpflOldProtect param placeholder 0x1018FC60 
{PAGE_WRITECOPY}
rop += rop_align    * 2
########## Grab kernel32 pointer from the stack, place it in EAX ##########
rop += "\x5D\x1C\x12\x10" * 6                   #0x10121C5D :  # SUB EAX,30 # RETN
rop += "\xF6\xBC\x11\x10"                       #0x1011BCF6 :  # MOV EAX,DWORD PTR DS:[EAX] # POP ESI # 
RETN
rop += rop_align
########## EAX = kernel pointer, now retrieve pointer to VirtualProtect() ##########
rop += ("\x76\xE5\x12\x10" + rop_align) * 4     #0x1012E576 :  # ADD EAX,100 # POP EBP # RETN
rop += "\x40\xD6\x12\x10"                       #0x1012D640 :  # ADD EAX,20 # RETN
rop += "\xB1\xB6\x11\x10"                       #0x1011B6B1 :  # ADD EAX,0C # RETN
rop += "\xD0\x64\x03\x10"                       #0x100364D0 :  # ADD EAX,8 # RETN
rop += "\x33\x29\x0E\x10"                       #0x100E2933 :  # DEC EAX # RETN
rop += "\x01\x2B\x0D\x10"                       #0x100D2B01 :  # MOV ECX,EAX # RETN
rop += "\xC8\x1B\x12\x10"                       #0x10121BC8 :  # MOV EAX,EDI # POP ESI # RETN
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Finding Gadgets

● Useful gadgets typically modify a pointer or 
cause a load or store operation
▸ ADD, SUB, DEC, INC, DEC, PUSH, POP, XCHG, 

XOR

● Tools now exist for finding gadgets
▸ msfpescan

▸ Pvefindaddr – PyCommand for ImmunityDbg
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Detecting ROP

● ROP requires the use of sub-sections of 
program blocks to create Gadgets

● Gadgets end in a RET instruction

● Normal program semantics generate call 
stacks that return to a code location 
immediately after a CALL or JMP instruction
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Detecting ROP

● Algorithm
INSTRUMENT_PROGRAM
for each IMAGE 
     for each BLOCK in IMAGE
          insert BLOCK in BLOCKLIST
          for each INSTRUCTION in BLOCK
                if INSTRUCTION is RETURN or BRANCH
                     insert code to retrieve SAVED_EIP from stack 
                     insert CALL to ROP_VALIDATE(SAVED_EIP) before INSTRUCTION

ROP_VALIDATE
if SAVED_EIP not in BLOCKLIST
     exit with error warning
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Detecting ROP

● Implementation
▸ The initialization 

for our pintool is 
as simple as 
opening a log file 
and adding a 
couple hooks

int main(int argc, char *argv[])
{
    PIN_InitSymbols();
    if(PIN_Init(argc,argv))
    {
        return Usage();
    }
    
    outfile = fopen("c:\\tools\\antirop.txt", "w");
    if(!outfile)
    {
        LOG("Error opening log file\n");
        return 1;
    }

    PIN_AddFiniFunction(Fini, 0);
    TRACE_AddInstrumentFunction(Trace, 0);

    LOG("[+] AntiROP instrumentation hooks 
installed\n");

    PIN_StartProgram();
    
    return 0;
}
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Detecting ROP

● Implementation
▸ This function 

implements the 
callback function 
when PIN loads a 
trace of basic 
blocks the first 
time and 
instruments RET 
instructions

VOID Trace(TRACE trace, VOID *v)
{
    ADDRINT addr = TRACE_Address(trace);

    // Visit every basic block in the trace
    for (BBL bbl = TRACE_BblHead(trace); 
         BBL_Valid(bbl); 
         bbl = BBL_Next(bbl))
    {
        for(INS ins = BBL_InsHead(bbl); 
            INS_Valid(ins); 
            ins=INS_Next(ins))
        {
            ADDRINT va = INS_Address(ins);
            if(INS_IsBranchOrCall(ins))
            {
                Calls.insert(va);
            }

            if(INS_IsRet(ins))
            {
                INS_InsertCall(ins, 
                IPOINT_BEFORE, 
AFUNPTR(AntiROPRetCheck),
                IARG_INST_PTR,
                IARG_REG_VALUE, REG_STACK_PTR,
                IARG_END);
            }
        }
    }
}
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Detecting ROP

● Implementation
▸ This function 

executes before 
every RET or 
indirect branch is 
executed to 
validate the saved 
return value points 
to an instruction 
after a call

VOID AntiROPRetCheck(ADDRINT va, ADDRINT esp)
{
    UINT32 *ptr = (UINT32 *)esp;

    for(int i = 0; i < 4; i++)
    {
        if(*(ptr + i) == 0x90909090)
        {
             fprintf(outfile, 

"NOPS FOUND AT ESP + %d: [%x] = 0x90909090\n",
i, ptr + i);

        }
    }

    CallsIter = Calls.find(*ptr);
    if (CallsIter != Calls.end()) 
    {
        count = 0;
    }
    else if(++count > threshold)
    {
        ReportAntiROP(*ptr, count, threshold);
    }

    fflush(outfile);
}
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Detecting ROP

● Output

DEMO

C:\tools>pin\pin.bat -t mypintool.dll -AntiROPRet -- kmplayer\KMPlayer.exe
C:\tools>type antirop.txt
NOPS FOUND AT ESP + 1: [1196b5f4] = 0x90909090
NOPS FOUND AT ESP + 2: [1196b5f8] = 0x90909090
NOPS FOUND AT ESP + 3: [1196b5fc] = 0x90909090
ANTI-ROP detected an attempted RET to 100ebf17 without using a CALL .. exiting
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Other Mitigations

● ROPDefender
▸ Shadow stack 

● Hook before CALL to store return address
● Hook before RET to determine if returning to address 

stored before CALL

● SHAN
▸ Branch monitoring

● Store each valid basic block in a list before execution
● At runtime verify branch destination is in list
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JUST-IN-TIME SHELLCODE
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Just-In-Time Shellcode

● Just-in-Time (JIT) Shellcode is emitted by a JIT 
compiler while converting bytecode of an 
interpreted language to native machine code

● Scripting code such as ActionScript or 
Javascript is supplied by the user and 
therefore creates potential for control of native 
code in the process address space
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Just-In-Time Shellcode

● The JIT process creates a writable and 
executable page with user controlled data

● If an attacker can manipulate the emitted 
machine code, it can be used to the advantage 
of the attacker to bypass mitigations
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VS

Just-In-Time Shellcode

● Published research has shown that using math 
operators, specifically XOR, leads to 
controllable machine code output

Operator ADD (+):
[ b8 90 90 90 3c ] mov eax ,03 c909090h
[ f2 0f 2a c0    ] cvtsi2sd xmm0 , eax
[ 66 0f 28 c8    ] movapd xmm1 , xmm0
[ f2 0f 58 c8    ] addsd xmm1 , xmm0
[ f2 0f 58 c8    ] addsd xmm1 , xmm0

Operator XOR (^):
[ b8 90 90 90 3c ] mov eax , 3c909090h
[ 35 90 90 90 3c ] xor eax , 3c909090h
[ 35 90 90 90 3c ] xor eax , 3c909090h
[ 35 90 90 90 3c ] xor eax , 3c909090h
[ 35 90 90 90 3c ] xor eax , 3c909090h
[ 35 90 90 90 3c ] xor eax , 3c909090h
[ 35 90 90 90 3c ] xor eax , 3c909090h
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Just-In-Time Shellcode

● Published research has shown that using math 
operators, specifically XOR, leads to 
controllable machine code output

var y=(0x11223344^0x44332211^0x44332211…);

Compiles as:

0x909090: 35 44 33 22 11  XOR EAX, 11223344
0x909095: 35 44 33 22 11  XOR EAX, 11223344
0x90909A: 35 44 33 22 11  XOR EAX, 11223344
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Just-In-Time Shellcode

● Published research has shown that using math 
operators, specifically XOR, leads to 
controllable machine code output

Disassemble at a byte offset to get useful code:

0x909091: 44                  INC ESP
0x909092: 33 22               XOR ESP, [EDX]
0x909094: 11 35 44 33 22 11   ADC [11223344], ESI
0x90909A: 35 44 33 22 11      XOR EAX, 11223344
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Just-In-Time Shellcode

● The native behavior of the JIT compiler results 
in an automatic DEP bypass

● Once a usable payload is constructed using 
specialized arguments around the XOR 
operator the executable payload must be 
found

● Heapspray or memory leak 
▸ See Dion Blazakis’s paper “Interpreter Exploitation”



42

Detecting JIT Shellcode

● The ActionScript and JavaScript JIT compilers 
change memory permissions of compiled 
machine code to R-E rather than RWE before 
execution

● We have seen that currently known JIT 
shellcode relies heavily on the XOR operator
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Detecting JIT Shellcode

● We can use a simple heuristic by hooking 
kernel32!VirtualProtect and checking the 
disassembly for an unusual number of XORs

● Piotr Bania also pointed out a primitive that 
can be used to identify operators

 

 

mov       reg , IMM32
operation reg , IMM32
operation reg , IMM32
operation reg , IMM32
…
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Detecting JIT Shellcode

● Algorithm
INSTRUMENT_PROGRAM
Insert CALL to JIT_VALIDATE at prologue to VirtualProtect

JIT_VALIDATE
Disassemble BUFFER passed to VirtualProtect
for each INSTRUCTION
    if INSTRUCTION is MOV_REG_IMM32 then
        while NEXT_INSTRUCTION uses IMM32 
             increase COUNT
             if COUNT > THRESHOLD then
                  exit with error warning
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Detecting JIT Shellcode

● Implementation
▸ The initialization 

for our pintool is 
as simple as 
opening a log file 
and adding a 
couple hooks

int main(int argc, char *argv[])
{
    PIN_InitSymbols();
    if(PIN_Init(argc,argv))
    {
        return Usage();
    }
    
    outfile = fopen("c:\\tools\\antijit.txt", "w");
    if(!outfile)
    {
        LOG("Error opening log file\n");
        return 1;
    }

    IMG_AddInstrumentFunction(ModuleLoad, NULL);

    LOG("[+] AntiJIT instrumentation hooks 
installed\n");

    PIN_StartProgram();
    
    return 0;
}
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Detecting JIT Shellcode

● Implementation
▸ This function 

implements the 
callback function 
when PIN loads a 
module so that 
VirtualProtect may 
be hooked

void ModuleLoad(IMG img, VOID *v) 
{
    RTN rtn;

    rtn = RTN_FindByName(img, "VirtualProtect");
    if (RTN_Valid(rtn))
    {
        RTN_Open(rtn);        
        
        RTN_InsertCall(rtn, 
            IPOINT_BEFORE, 
AFUNPTR(VirtualProtectHook),
            IARG_FUNCARG_ENTRYPOINT_VALUE, 0,  // 
lpAddress
            IARG_FUNCARG_ENTRYPOINT_VALUE, 1,  // 
dwSize
            IARG_END);

        RTN_Close(rtn);
    }
}
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Detecting JIT Shellcode

● Implementation
▸ This function 

executes before 
calls to 
VirtualProtect to 
disassemble the 
target buffer and 
determine if a JIT 
shellcode is 
probable

void VirtualProtectHook(VOID *address, SIZE_T dwSize)
{
    // Disassemble buffer into linked list
...
    while(insn && !MOV_IMM32(insn))
        insn = insn->next;

        while(insn)
        {
            if(OP_IMM32(insn)
                count++;

            if(count > threshold)
                ReportAntiJIT();

            insn = insn->next;
         }
}
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QUESTIONS
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Q & A

● VRT information:
▸ Web – http://www.snort.org/vrt

▸ Blog – http://vrt-sourcefire.blogspot.com/

▸ Twitter – @VRT_sourcefire

▸ Videos – http://vimeo.com/vrt

▸ Labs – http://labs.snort.org

Richard Johnson

rjohnson@sourcefire.com

rjohnson@uninformed.org

@richinseattle

http://www.snort.org/vrt
http://vrt-sourcefire.blogspot.com/
http://twitter.com/VRT_sourcefire
http://vimeo.com/vrt
http://labs.snort.org/
http://labs.snort.org/
mailto:rjohnson@sourcefire.com
mailto:rjohnson@uninformed.org
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